A novel continuous two-phase partitioning bioreactor operated with polymeric tubing: Performance validation for enhanced biological removal of toxic substrates.

نویسندگان

  • M Concetta Tomei
  • Domenica Mosca Angelucci
  • Andrew J Daugulis
چکیده

A continuous two-phase partitioning bioreactor (C-TPPB), operated with coiled tubing made of the DuPont polymer Hytrel 8206, was tested for the bioremediation of 4-chlorophenol, as a model toxic compound. The tubing was immersed in the aqueous phase, with the contaminated water flowing tube-side, and an adapted microbial culture suspended in the bioreactor itself, with the metabolic demand of the cells creating a concentration gradient to cause the substrate to diffuse into the bioreactor for biodegradation. The system was operated over a range of loadings (tubing influent concentration 750-1500 mg L-1), with near-complete substrate removal in all cases. Distribution of the contaminant at the end of the tests (96 h) highlighted biological removal in the range of 87-95%, while the amount retained in the polymer ranged from ∼1 to 8%. Mass transfer of the substrate across the tubing wall was not limiting, and the polymer demonstrated the capacity to buffer the substrate loadings and to adapt to microbial metabolism. The impact of C-TPPB operation on biomass activity was also investigated by a kinetic characterization of the microbial culture, which showed better resistance to substrate inhibition after C-TPPB operation, thereby confirming the beneficial effect of sub-inhibitory controlled conditions, characteristic of TPPB systems.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Study on Membrane Bioreactor for Water Reuse from the Effluent of Industrial Town Wastewater Treatment Plant

Background: Considering the toxic effects of heavy metals and microbial pathogens in industrial wastewaters, it is necessary to treat metal and microbial contaminated wastewater prior to disposal in the environment. The purpose of this study is to assess the removal of heavy metals pollution and microbial contamination from a mixture of municipal and industrial wastewater using membrane biorea...

متن کامل

بررسی کارایی بیوراکتور دو فازی همزن‌دار در پالایش تولوئن از جریان هوا با استفاده از سودوموناس پتیدا

Introduction: There are different methods for controlling gaseous pollutants formed from air pollution sources that one of the most economical and efficient of them, is bio-filtration. The purpose of this study is Toluene removal from airstream by using the pure Pseudomonas putida bacteria as a fluidized bed in a two phase partitioning stirred tank bioreactor.Toluene ( Metyle benzene) is one of...

متن کامل

Performance of Biological hydrogen Production Process from Synthesis Gas, Mass Transfer in Batch and Continuous Bioreactors

Biological hydrogen production by anaerobic bacterium, Rhodospirillum rubrum was studied in batch and continuous bioreactors using synthesis gas (CO) as substrate. The systems were operated at ambient temperature and pressure. Correlations available in the literature were used to estimate the gas-liquid mass transfer coefficients (KLa) in batch reactor. Based on experimental results for the con...

متن کامل

2,4-Dichlorophenol removal in a solid-liquid two phase partitioning bioreactor (TPPB): kinetics of absorption, desorption and biodegradation.

The applicability of a sequencing batch two phase partitioning bioreactor (TPPB) to the biodegradation of a highly toxic compound, 2,4-dichlorophenol (DCP) (EC(50)=2.3-40 mgL(-1)) was investigated. A kinetic study of the individual process steps (DCP absorption into the polymer, desorption and biodegradation) was performed and, based on favourable absorption/desorption characteristics (DCP diff...

متن کامل

Enhanced Bioethanol Production in Batch Fermentation by Pervaporation Using a PDMS Membrane Bioreactor

The integration of batch fermentation and membrane-based pervaporation process in a membrane bioreactor (MBR) was studied to enhance bioethanol production compared to conventional batch fermentation operated at optimum condition. For this purpose, a laboratory-scale MBR system was designed and fabricated. Dense hydrophobic Polydimethylsiloxane (PDMS) membrane was used for pervaporation. For fer...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of environmental management

دوره 187  شماره 

صفحات  -

تاریخ انتشار 2017